Bailey Pairs and Indefinite Quadratic Forms
نویسنده
چکیده
We construct classes of Bailey pairs where the exponent of q in αn is an indefinite quadratic form. As an application we obtain families of q-hypergeometric mock theta multisums.
منابع مشابه
Approximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملA Bailey Lattice
We exhibit a technique for generating new Bailey pairs which leads to deformations of classical q-series identities, multiple series identities of the Rogers-Ramanujan type, identities involving partial theta functions, and a variety of representations for q-series by number theoretic objects like weight 3/2 modular forms, ternary quadratic forms, and weighted binary quadratic forms.
متن کاملA Note on Some Partitions Related to Ternary Quadratic Forms
We offer some partition functions related to ternary quadratic forms, and note on its asymptotic behavior. We offer these results as an application of a simple method related to conjugate Bailey pairs.
متن کاملOn Indefinite Binary Quadratic Forms and Quadratic Ideals
We consider some properties of indefinite binary quadratic forms F (x, y) = ax +bxy−y of discriminant ∆ = b +4a, and quadratic ideals I = [a, b−√∆ ]. AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16
متن کاملIdentification and signatures based on NP-hard problems of indefinite quadratic forms
We prove NP-hardness of equivalence and representation problems of quadratic forms under probabilistic reductions, in particular for indefinite, ternary quadratic forms with integer coefficients. We present identifications and signatures based on these hard problems. The bit complexity of signature generation and verification is quadratic using integers of bit length 150.
متن کامل